

Biomnis

Lymphomes Non-Hodgkiniens B et T

Dans le cadre des LNH-B, cinq panels NGS sont proposés au laboratoire Eurofins Biomnis :

- le panel NGS « LLC » (cf. Fiche panel LLC, réf. DS119),
- le panel NGS « LLCTR » (cf. Fiche panel LLC, réf. DS119),
- le panel NGS « LPWAL »,
- le panel NGS « BRAF »,
- le panel NGS « LNHB ».

Et dans le cadre des LNH-T, un panel :

le panel NGS « LNHT ».

Lymphomes Non-Hodgkiniens B

▶ Le panel NGS "LPWAL" consiste en une analyse de 10 gènes : MYD88, CXCR4, ARID1A, CD79A, CD79B, NOTCH2, TP53, BTK, PLCG2 et CARD11. Il doit être associé à une étude cytogénétique médullaire.

Il est dédié au diagnostic des lymphomes lymphoplasmocytaires dont principalement la maladie de Waldenström. La mutation *MYD88* est rapportée dans plus de 90% des cas et peut orienter un diagnostic d'exclusion de LZM par exemple. Dans plus de 40% des cas, une mutation *CXCR4* est observée et généralement associée à une mutation *MYD88*. Il existe également des cas avec mutation *CXCR4* sans mutation *MYD88*. Des mutations dans les gènes *ARID1A*, *CD79A*, *CD79B* et *NOTCH2* sont également rapportées dans la maladie de Waldenström et peuvent participer à la démarche diagnostique.

Ce panel permet également une approche pronostique et thérapeutique :

La présence d'une mutation *CXCR4* est associée à un pronostic péjoratif et représente une mutation de résistance aux BTKi, au même titre que des mutations secondaires dans les gènes *BTK* et *PLCG2*. La présence d'une mutation *TP53*, même si rare (2%), est associée à un pronostic péjoratif. L'association d'une mutation *MYD88* avec absence de mutation *CXCR4* est de pronostic favorable sous BTKi, contrairement à l'association des 2 mutations *MYD88* et *CXCR4* qui est associée à une réponse tardive aux BTKi. L'absence de mutation *MYD88* dans une maladie de Waldenström caractérise une maladie de pronostic péjoratif avec une faible réponse aux BTKi ou à une association bendamustine/ rituximab.

Le score pronostique IPSSWM-R n'inclut pas à ce jour de données moléculaires.

Panel NGS « LPWAL » - Gènes concernés

Gène	Transcript	Exon rank
ARID1A	NM_006015	Full Coding Region
BTK	NM_000061	Full Coding Region
CARD11	NM_032415	Full Coding Region
CD79A	NM_001783	Full Coding Region
CD79B	NM_000626	Full Coding Region
CXCR4	NM_003467	Full Coding Region
MYD88	NM_002468	Full Coding Region
NOTCH2	NM_024408	Full Coding Region
PLCG2	NM_002661	Full Coding Region
TP53	NM_000546	Full Coding Region

Code analyse: LPWAL

▶ Le panel NGS « BRAF » consiste en l'analyse mutationnelle du gène BRAF. Cette mutation est rapportée dans plus de 95% des cas de leucémies à tricholeucocytes et représente un critère diagnostique très utile en association avec une analyse immunophénotypique dédiée.

Panel NGS « BRAF » - Gène concernés

Gène	Transcript	Exon rank
BRAF	NM_004333	Full Coding Region

Code analyse: BRAF

▶ Le panel NGS « LNHB » consiste en une analyse de 45 gènes :

ARID1A/ATM/B2M/BAX/BCL2/BCOR/BIRC3/BRAF/BTK/CARD11/CD79A/CD79B/CREBBP/CXCR4/EGR2/EP300/EZH2/FBXW7/F0X01A/GNA13/HRAS/KLF2/KRAS/MAP2K1/MCL1/MEF2B/MGA/MYC/MYD88/NFKBIE/NOTCH1/NOTCH2/NRAS/PIM1/PLCG2/POT1/RPS15/SAMHD1/SF3B1/SOCS1/STAT6/TNFAIP3/TNFRSF14/TP53/XP01. Il doit être associé à une étude cytogénétique sanguine, médullaire ou ganglionnaire.

Rq: Pour la LLC, les lymphomes plasmocytaires et la leucémie à tricholeucocytes: cf. Fiche panel DS119 et paragraphes correspondants.

Il permet une aide diagnostique pour identifier, en complément des analyses histologiques, cytologiques et cytogénétiques, un type ou un sous-type de LNH-B des classifications OMS et ICC 2022.

Biomnis

Quelques exemples d'aide diagnostique :

- Pour les lymphomes diffus à grandes cellules, les sous-types GC et ABC peuvent être caractérisés par des profils mutationnels distincts: mutations EZH2, GNA13, MEF2B, TNFRSF14, B2M et CREBBP pour le type GC et MYD88, CD79B, TNFAIP3, CARD11 et PIM1 pour le type ABC.
- Le sous-type « lymphome folliculaire BCL2 non réarrangé » CD23+ est généralement associé à une mutation STAT6 ou TNFRSF14.
- Le lymphome médiastinal primitif à grandes cellules B est caractérisé par des mutations dans les gènes STAT6, XPO1, NFKBIE, TNFAIP3, GNA13 ou B2M.
- Pour les lymphomes de la zone marginale, le profil mutationnel du panel NGS permet de différencier les formes extra-ganglionnaires (mutation TNFAIP3, TNFRSF14 ou TET2) des formes ganglionnaires ou spléniques (mutations KLF2 ou NOTCH2).

Ce panel permet également une aide pronostique :

- Dans le cadre du lymphome folliculaire, le score m7-FLIPI permet d'évaluer le pronostic à l'aide du statut mutationnel de 7 gènes (EZH2, ARID1A, MEF2B, EP300, FOX01, CREBBP et CARD11).
- Dans le cadre du lymphome du manteau, la présence de mutations *TP53*, *NOTCH1* ou *NOTCH2* conditionne un pronostic défavorable.
- Dans le lymphome diffus à grandes cellules, de nouveaux sous-types moléculaires (MCD, EZB, BN2, ST2, A53 et N1), définis par NGS, permettent d'établir également un pronostic. Ils intègrent l'analyse de nouveaux gènes (SOCS1, NOTCH1...). La mutation TP53 reste également de pronostic péjoratif dans cette entité.

Sur un plan **thérapeutique**, en complément des recherches de mutations de résistance aux BTKi (mutations dans les gènes *BTK* et *PLCG2*) dans le cadre des LLC, LCM, LZM ou des leucémies à tricholeucocytes, des thérapies ciblées offrent de nouvelles voies thérapeutiques : exemple de la cible *EZH2* dans le lymphome folliculaire.

Panel NGS « LNHB » - Gènes concernés

Gène	Transcript	Exon rank
ARID1A	NM_006015	Full Coding Region
ATM	NM_000051	Full Coding Region
B2M	NM_004048	Full Coding Region
BAX	NM_138761	Full Coding Region
BCL2	NM_000633	Full Coding Region
BCOR	NM_017745	Full Coding Region
BIRC3	NM_001165	Full Coding Region
BRAF	NM_004333	Full Coding Region
BTK	NM_000061	Full Coding Region
CARD11	NM_032415	Full Coding Region
CD79A	NM_001783	Full Coding Region
CD79B	NM_000626	Full Coding Region
CREBBP	NM_004380	Full Coding Region

CXCR4	NM 003467	
CACH4	14141_003407	Full Coding Region
EGR2	NM_000399	Full Coding Region
EP300	NM_001429	Full Coding Region
EZH2	NM_004456	Full Coding Region
FBXW7	NM_033632	Full Coding Region
FOX01A	NM_002015	Full Coding Region
GNA13	NM_006572	Full Coding Region
HRAS	NM_176795	Full Coding Region
KLF2	NM_016270	Full Coding Region
KRAS	NM_033360	Full Coding Region
MAP2K1	NM_002755	Full Coding Region
MCL1	NM_021960	Full Coding Region
MEF2B I	NM_001145785	Full Coding Region

Biomnis

Gène	Transcript	Exon rank
MGA	NM_001164273	Full Coding Region
MYC	NM_002467	Full Coding Region
MYD88	NM_002468	Full Coding Region
NFKBIE	NM_004556	Full Coding Region
NOTCH1	NM_017617	Full Coding Region
NOTCH2	NM_024408	Full Coding Region
NRAS	NM_002524	Full Coding Region
PIM1	NM_002648	Full Coding Region
PLCG2	NM_002661	Full Coding Region
POT1	NM_015450	Full Coding Region

Gène	Transcript	Exon rank
RPS15	NM_001018	Full Coding Region
SAMHD1	NM_015474	Full Coding Region
SF3B1	NM_012433	Full Coding Region
SOCS1	NM_003745	Full Coding Region
STAT6	NM_003153	Full Coding Region
TNFAIP3	NM_006290	Full Coding Region
TNFRSF14	NM_003820	Full Coding Region
TP53	NM_000546	Full Coding Region
XPO1	NM_003400	Full Coding Region

Code analyse: LNHB

Lymphomes Non-Hodgkinien T

► Le panel NGS « LNHT » consiste en une analyse de 19 gènes : ARID1A, ATM, BCOR, CARD11, CD28, DNMT3A, EP300, FBXW7, IDH2, JAK2, JAK3, MGA, NOTCH1, PLCG1, RHOA, STAT3, STAT5B, TET2 et TP53.

Il doit être associé à une recherche de clonalité T et une étude cytogénétique.

Il est principalement dédié à une aide diagnostique dans le cadre des lymphomes T périphériques. Des anomalies cytogénétiques récurrentes sont également rapportées à visée diagnostique et doivent être recherchées en association avec ces anomalies moléculaires. A titre d'exemple, l'association des mutations *IDH2*, *RHOA* et *TET2* permet de confirmer le diagnostic de lymphome ganglionnaire TFH de type angioimmunoblastique (la mutation IDH2 étant exclusive à ce sous-type de lymphome TFH). La présence d'une mutation *STAT5B* et *JAK3* aide au diagnostic différentiel entre un lymphome T intestinal épithéliotrope monomorphe (LTIEM) (mutation *STAT5B* rapportée dans plus de 60% des cas) et un lymphome T associé à une entéropathie (LTAE), plutôt associé à une mutation *STAT3* (20% des cas). A l'inverse, le lymphome anaplasique à grandes cellules *ALK*+ n'est associé à quasi aucune mutation du spectre mutationnel classique des lymphomes T.

Sur un plan théranostique, de potentielles thérapies ciblées sont en cours d'étude ciblant les gènes *IDH2* ou *RHOA* par exemple.

Riomnia

Fréquences des mutations géniques et mutations à fort intérêt diagnostique dans les lymphomes T

	LPL-T	LGL-T	LLTA	SS	LTAE	LTIEM	LHST	LAGC	LTFH-AI	LTNKEG
ARID1A				X						X
ATM	X			X						
BCOR										X
CARD11			X							
CD28			X	X					X	
DNMT3A									X	
EP300				X						X
FBXW7										
IDH2									Χ	
JAK2										X
JAK3	Χ					Χ		X		X
MGA										X
NOTCH1			X							
PLCG1			Χ							
RHOA									X	
STAT3		X	Χ		X			X(ALK-)		X
STAT5B	X	X		X	X	X	X			X
TET2	X								X	X
TP53	X		Χ	X	X	X		X		X

Fréquence de la mutation :

X 5% < < 20%

X 20% < 50%

X 50% < < 100%

Mutation à fort intérêt diagnostique

Abréviations :

LPL-T: Leucémie prolymphocytaire T

LGL-T : Leucémie à grands lymphocytes granuleux T

LLTA : Leucémie/lymphome T de l'adulte

SS : Syndrome de Sézary

LTAE : Lymphome T associé à une entéropathie

LTIEM: Lymphome T intestinal épithéliotrope monomorphe

LHST: Lymphome hépatosplénique à cellules T LAGC: Lymphome anaplasique à grandes cellules LTFH-AI: Lymphome ganglionnaire TFH de type

angio immuno blatiques

 $\textit{LTNKEG:Lymphome \`a cellules T/NK extra ganglion naire}$

Panel NGS « LNHT » - Gènes concernés

Gène	Transcript	Exon rank				
ARID1A	NM_006015	Full Coding Region				
ATM	NM_000051	Full Coding Region				
BCOR	NM_017745	Full Coding Region				
CARD11	NM_032415	Full Coding Region				
CD28	NM_006139	Full Coding Region				
DNMT3A	NM_022552	Full Coding Region				
EP300	NM_001429	Full Coding Region				
FBXW7	NM_033632	Full Coding Region				
IDH2	NM_002168	Full Coding Region				
JAK2	NM_004972	Full Coding Region				
JAK3	NM_000215	Full Coding Region				
MGA	NM_001164273	Full Coding Region				
NOTCH1	NM_017617	Full Coding Region				
PLCG1	NM_002660	Full Coding Region				
RHOA	NM_001664	Full Coding Region				
STAT3	NM_139276	Full Coding Region				
STAT5B	NM_012448	Full Coding Region				
TET2	NM_001127208	Full Coding Region				
TP53	NM_000546	Full Coding Region				

Code analyse: LNHT

Conditions pré-analytiques : Sang ou Moelle EDTA

Délai: 10 jours (une semaine supplémentaire si vérification nécessaire par Sanger)

Codes RIHN:

BRAF: N452

• LPWAL, LNHB et LNHT: N453

Contacts

Dr Benoit QUILICHINI Benoit.Quilichini@biomnis.eurofinseu.com

Tél: 04 72 80 23 65

Dr Alexandra PETIT
Alexandra.Petit@biomnis.eurofinseu.com

Tél: 04 72 80 57 50

Dr Clarisse BOURDIN Clarisseanne.Bourdin@biomnis.eurofinseu.com

Tél: 04 72 80 25 64

Vanna GEROMEL
Vanna.Geromel@biomnis.eurofinseu.com

Tél: 04 72 80 25 09

Références

The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Alaggio R et al. Leukemia. 2022 Jul;36(7):1720–1748. PMID: 35732829

The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Campo E et al. Blood. 2022 Sep 15;140(11):1229-1253. PMID: 35653592

Diagnostic and prognostic molecular pathology of lymphoid malignancies. Fend F et al. Virchows Arch 2023 Sep 25. PMID: 37747559

Genomic profiling for clinical decision making in lymphoid neoplasms. De Leval L. et al. Blood. 2022 Nov 24;140(21):2193-2227. PMID: 36001803

Precision diagnostics in lymphomas - Recent developments and future directions. Mansouri L et al. Semin Cancer Biol. 2022 Sep;84:170-183. PMID: 34699973

Genetic Landscape of Peripheral T-Cell Lymphoma. Hathuc V, Kreisel F. Life (Basel). 2022 Mar 11;12(3):410. PMID: 35330161

Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes. Morin R et al. Br J Haematol. 2022 Feb;196(4):814-829. PMID: 34467527

Exploiting gene mutations and biomarkers to guide treatment recommendations in mantle cell lymphoma. Goy A. Expert Rev Hematol. 2021 Oct;14(10):927–943. PMID: 34253131

Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. Treon S. et al. J Clin Oncol. 2020 Apr 10;38(11):1198–1208. PMID: 32083995

A revised international prognostic score system for Waldenström's macroglobulinemia. Kastritis et al. Leukemia 2019 Nov;33(11):2654-2661. PMID: 31118465

The Need for a Consensus Next-generation Sequencing Panel for Mature Lymphoid Malignancies. Sujobert P et al. Hemasphere. 2018 Dec 27;3(1):e169. PMID: 31723808

Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Pastore A et al. Lancet Oncol. 2015 Sep;16(9):1111-1122. PMID: 26256760